
Computer	Science	Teachers	Association	(2017).	CSTA	K-12	Computer	Science	Standards,	Revised	2017.	Retrieved	
from	http://www.csteachers.org/standards.		
	

	
	
	
	

K-12	Computer	Science	Standards	
Revised	2017	

	
	
	

	
	

On	January	11,	2018,	the	State	Board	of	Education	passed	a	resolution	
endorsing	the	CSTA	K-12	Computer	Science	Standards	and	

encouraging	local	education	agencies	across	the	Commonwealth	to	
voluntarily	adopt	these	standards	to	guide	their	practice	in	the	delivery	

of	Computer	Science	instruction.	
	
	

K-12 Computer Science Standards, Revised 2017

This document includes all levels of the 2017 CSTA K-12 Computer Science Standards, which were created by
educators and released at the CSTA Annual Conference in July 2017. These standards are licensed under
a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.

The K–12 Computer Science Framework, led by the Association for Computing
Machinery, Code.org, Computer Science Teachers Association, Cyber Innovation Center, and National
Math and Science Initiative in partnership with states and districts, informed the development of this work.

About the CSTA K-12 Computer Science Standards
Computer science and the technologies it enables rest at the heart of our economy and the way we live our lives. To be well-educated
citizens in a computing-intensive world and to be prepared for careers in the 21st century, our students must have a clear
understanding of the principles and practices of computer science. The CSTA K–12 Computer Science Standards delineate a core set
of learning objectives designed to provide the foundation for a complete computer science curriculum and its implementation at the
K–12 level. To this end, the CSTA Standards:

• Introduce the fundamental concepts of computer science to all students, beginning at the elementary school level.

• Present computer science at the secondary school level in a way that can fulfill a computer science, math, or science graduation credit.

• Encourage schools to offer additional secondary-level computer science courses that will allow interested students to study facets of
computer science in more depth and prepare them for entry into the work force or college.

• Increase the availability of rigorous computer science for all students, especially those who are members of underrepresented groups.

The standards have been written by educators to be coherent and comprehensible to teachers, administrators, and policy makers.

Levels 1A, 1B, 2, and 3A are the computer science standards for ALL students. The Level 3B standards are intended for students who
wish to pursue the study of computer science in high school beyond what is required for all students (specialty or elective courses).

Connection to the K-12 Computer Science Framework
The K–12 Computer Science Framework (k12cs.org) provides overarching, high-level guidance per grade bands, while the standards
provide detailed, measurable student performance expectations. The Framework was considered as a primary input for the standards
development process.

The CSTA Standards Revision Task Force crafted standards by combining concept statements and practices from the Framework. It
also used descriptive material from the Framework when writing examples and clarifying statements to accompany the standards.

Concepts
1. Computing Systems
2. Networks and the Internet
3. Data and Analysis
4. Algorithms and Programming
5. Impacts of Computing

Practices
1. Fostering an Inclusive Computing

Culture
2. Collaborating Around Computing
3. Recognizing and Defining

Computational Problems

4. Developing and Using Abstractions
5. Creating Computational Artifacts
6. Testing and Refining Computational

Artifacts
7. Communicating About Computing

Level 1A: Grades K-2 (Ages 5-7)
Computing Systems
Identifier Standard and Descriptive Statement Subconcept Practice

1A-CS-01 Select and operate appropriate software to perform a variety of tasks, and recognize that
users have different needs and preferences for the technology they use.

People use computing devices to perform a variety of tasks accurately and quickly. Students should be able to
select the appropriate app/program to use for tasks they are required to complete. For example, if students
are asked to draw a picture, they should be able to open and use a drawing app/program to complete this
task, or if they are asked to create a presentation, they should be able to open and use presentation software.
In addition, with teacher guidance, students should compare and discuss preferences for software with the
same primary functionality. Students could compare different web browsers or word processing, presentation,
or drawing programs.

Devices 1.1

1A-CS-02 Use appropriate terminology in identifying and describing the function of common physical
components of computing systems (hardware).

A computing system is composed of hardware and software.Hardware consists of physical
components.Students should be able to identify and describe the function of external hardware, such as
desktop computers, laptop computers, tablet devices, monitors, keyboards, mice, and printers.

Hardware &
Software

7.2

1A-CS-03 Describe basic hardware and software problems using accurate terminology.
Problems with computing systems have different causes. Students at this level do not need to understand
those causes, but they should be able to communicate a problem with accurate terminology (e.g., when an
app or program is not working as expected, a device will not turn on, the sound does not work, etc.). Ideally,
students would be able to use simple troubleshooting strategies, including turning a device off and on to
reboot it, closing and reopening an app, turning on speakers, or plugging in headphones. These are,
however, not specified in the standard, because these problems may not occur.

Troubleshooting 6.2, 7.2

Networks and the Internet
1A-NI-04 Explain what passwords are and why we use them, and use strong passwords to protect

devices and information from unauthorized access.

Learning to protect one's device or information from unwanted use by others is an essential first step in
learning about cybersecurity. Students are not required to use multiple strong passwords. They should
appropriately use and protect the passwords they are required to use.

Cybersecurity 7.3

Data and Analysis
1A-DA-05 Store, copy, search, retrieve, modify, and delete information using a computing device and

define the information stored as data.

All information stored and processed by a computing device is referred to as data. Data can be images, text
documents, audio files, software programs or apps, video files, etc. As students use software to complete
tasks on a computing device, they will be manipulating data.

Storage 4.2

1A-DA-06 Collect and present the same data in various visual formats.

The collection and use of data about the world around them is a routine part of life and influences how people
live. Students could collect data on the weather, such as sunny days versus rainy days, the temperature at the
beginning of the school day and end of the school day, or the inches of rain over the course of a storm.
Students could count the number of pieces of each color of candy in a bag of candy, such as Skittles or
M&Ms. Students could create surveys of things that interest them, such as favorite foods, pets, or TV shows,
and collect answers to their surveys from their peers and others. The data collected could then be organized
into two or more visualizations, such as a bar graph, pie chart, or pictograph.

Collection
Visualization &
Transformation

7.1, 4.4

1A-DA-07 Identify and describe patterns in data visualizations, such as charts or graphs, to make
predictions.

Data can be used to make inferences or predictions about the world. Students could analyze a graph or pie
chart of the colors in a bag of candy or the averages for colors in multiple bags of candy, identify the patterns
for which colors are most and least represented, and then make a prediction as to which colors will have most
and least in a new bag of candy. Students could analyze graphs of temperatures taken at the beginning of the
school day and end of the school day, identify the patterns of when temperatures rise and fall, and predict if
they think the temperature will rise or fall at a particular time of the day, based on the pattern observed.

Inference &
Models

4.1

	
Algorithms and Programming
1A-AP-08 Model daily processes by creating and following algorithms (sets of step-by-step

instructions) to complete tasks.

Composition is the combination of smaller tasks into more complex tasks. Students could create and follow
algorithms for making simple foods, brushing their teeth, getting ready for school, participating in clean-up
time.

Algorithms 4.4

	
	
	

1A-AP-09 Model the way programs store and manipulate data by using numbers or other symbols to
represent information.

Information in the real world can be represented in computer programs. Students could use thumbs up/down
as representations of yes/no, use arrows when writing algorithms to represent direction, or encode and
decode words using numbers, pictographs, or other symbols to represent letters or words.

Variables 4.4

1A-AP-10 Develop programs with sequences and simple loops, to express ideas or address a
problem.

Programming is used as a tool to create products that reflect a wide range of interests. Control structures
specify the order in which instructions are executed within a program.

Sequences are the order of instructions in a program. For example, if dialogue is not sequenced correctly
when programming a simple animated story, the story will not make sense. If the commands to program a
robot are not in the correct order, the robot will not complete the task desired.

Loops allow for the repetition of a sequence of code multiple times. For example, in a program to show the
life cycle of a butterfly, a loop could be combined with move commands to allow continual but controlled
movement of the character.

Control 5.2

1A-AP-11 Decompose (break down) the steps needed to solve a problem into a precise sequence of
instructions.

Decomposition is the act of breaking down tasks into simpler tasks. Students could break down the steps
needed to make a peanut butter and jelly sandwich, to brush their teeth, to draw a shape, to move a character
across the screen, or to solve a level of a coding app.

Modularity 3.2

1A-AP-12 Develop plans that describe a program’s sequence of events, goals, and expected
outcomes.

Creating a plan for what a program will do clarifies the steps that will be needed to create a program and can
be used to check if a program is correct. Students could create a planning document, such as a story map, a
storyboard, or a sequential graphic organizer, to illustrate what their program will do. Students at this stage
may complete the planning process with help from their teachers.

Program
Development

5.1, 7.2

1A-AP-13 Give attribution when using the ideas and creations of others while developing programs.

Using computers comes with a level of responsibility. Students should credit artifacts that were created by
others, such as pictures, music, and code. Credit could be given orally, if presenting their work to the class, or
in writing or orally, if sharing work on a class blog or website. Proper attribution at this stage does not require
a formal citation, such as in a bibliography or works cited document.

Program
Development

7.3

	

1A-AP-14 Debug (identify and fix) errors in an algorithm or program that includes sequences and
simple loops.

Algorithms or programs may not always work correctly. Students should be able to use various strategies, such
as changing the sequence of the steps, following the algorithm in a step-by-step manner, or trial and error to
fix problems in algorithms and programs.

Program
Development

6.2

1A-AP-15 Using correct terminology, describe steps taken and choices made during the iterative
process of program development.

At this stage, students should be able to talk or write about the goals and expected outcomes of the
programs they create and the choices that they made when creating programs. This could be done using
coding journals, discussions with a teacher, class presentations, or blogs.

Program
Development

7.2

	
Impacts of Computing
1A-IC-16 Compare how people live and work before and after the implementation or adoption of

new computing technology.

Computing technology has positively and negatively changed the way people live and work. In the past, if
students wanted to read about a topic, they needed access to a library to find a book about it. Today,
students can view and read information on the Internet about a topic or they can download e-books about it
directly to a device. Such information may be available in more than one language and could be read to a
student, allowing for great accessibility.

Culture 7

1A-IC-17 Work respectfully and responsibly with others online.

Online communication facilitates positive interactions, such as sharing ideas with many people, but the public
and anonymous nature of online communication also allows intimidating and inappropriate behavior in the
form of cyberbullying. Students could share their work on blogs or in other collaborative spaces online, taking
care to avoid sharing information that is inappropriate or that could personally identify them to others.
Students could provide feedback to others on their work in a kind and respectful manner and could tell an
adult if others are sharing things they should not share or are treating others in an unkind or disrespectful
manner on online collaborative spaces.

Social
Interactions

2.1

1A-IC-18 Keep login information private, and log off of devices appropriately.

People use computing technology in ways that can help or hurt themselves or others. Harmful behaviors, such
as sharing private

information and leaving public devices logged in should be recognized and avoided.

Safety Law &
Ethics

7.3

	

Level 1B: Grades 3-5 (Ages 8-11)
Computing Systems
Identifier Standard and Descriptive Statement Subconcept Practice

1B-CS-01 Describe how internal and external parts of computing devices function to form a system.

Computing devices often depend on other devices or components. For example, a robot depends on a
physically attached light sensor to detect changes in brightness, whereas the light sensor depends on the
robot for power. Keyboard input or a mouse click could cause an action to happen or information to be
displayed on a screen; this could only happen because the computer has a processor to evaluate what is
happening externally and produce corresponding responses. Students should describe how devices and
components interact using correct terminology.

Devices 7.2

1B-CS-02 Model how computer hardware and software work together as a system to accomplish
tasks.

In order for a person to accomplish tasks with a computer, both hardware and software are needed. At this
stage, a model should only include the basic elements of a computer system, such as input, output, processor,
sensors, and storage. Students could draw a model on paper or in a drawing program, program an animation
to demonstrate it, or demonstrate it by acting this out in some way.

Hardware &
Software

4.4

1B-CS-03 Determine potential solutions to solve simple hardware and software problems using
common troubleshooting strategies.

Although computing systems may vary, common troubleshooting strategies can be used on all of them.
Students should be able to identify solutions to problems such as the device not responding, no power, no
network, app crashing, no sound, or password entry not working. Should errors occur at school, the goal
would be that students would use various strategies, such as rebooting the device, checking for power,
checking network availability, closing and reopening an app, making sure speakers are turned on or
headphones are plugged in, and making sure that the caps lock key is not on, to solve these problems, when
possible.

Troubleshooting 6.2

Networks and the Internet
1B-NI-04 Model how information is broken down into smaller pieces, transmitted as packets through

multiple devices over networks and the Internet, and reassembled at the destination.

Information is sent and received over physical or wireless paths. It is broken down into smaller pieces called
packets, which are sent independently and reassembled at the destination. Students should demonstrate their
understanding of this flow of information by, for instance, drawing a model of the way packets are transmitted,
programming an animation to show how packets are transmitted, or demonstrating this through an unplugged
activity which has them act it out in some way.

Network
Communication
& Organization

4.4

1B-NI-05 Discuss real-world cybersecurity problems and how personal information can be protected.

Just as we protect our personal property offline, we also need to protect our devices and the information
stored on them. Information can be protected using various security measures. These measures can be
physical and/or digital. Students could discuss or use a journaling or blogging activity to explain, orally or in
writing, about topics that relate to personal cybersecurity issues. Discussion topics could be based on current
events related to cybersecurity or topics that are applicable to students, such as the necessity of backing up
data to guard against loss, how to create strong passwords and the importance of not sharing passwords, or
why we should install and keep anti-virus software updated to protect data and systems.

Cybersecurity 3.1

Data and Analysis
1B-DA-06 Organize and present collected data visually to highlight relationships and support a claim.

Raw data has little meaning on its own. Data is often sorted or grouped to provide additional clarity.
Organizing data can make interpreting and communicating it to others easier. Data points can be clustered by
a number of commonalities. The same data could be manipulated in different ways to emphasize particular
aspects or parts of the data set. For example, a data set of sports teams could be sorted by wins, points
scored, or points allowed, and a data set of weather information could be sorted by high temperatures, low
temperatures, or precipitation.

Collection
Visualization &
Transformation

7.1

1B-DA-07 Use data to highlight or propose cause-and-effect relationships, predict outcomes, or
communicate an idea.

The accuracy of data analysis is related to how realistically data is represented. Inferences or predictions based
on data are less likely to be accurate if the data is not sufficient or if the data is incorrect in some way.
Students should be able to refer to data when communicating an idea. For example, in order to explore the
relationship between speed, time, and distance, students could operate a robot at uniform speed, and at
increasing time intervals to predict how far the robot travels at that speed. In order to make an accurate
prediction, one or two attempts of differing times would not be enough. The robot may also collect

Inference &
Models

7.1

temperature data from a sensor, but that data would not be relevant for the task. Students must also make
accurate measurements of the distance the robot travels in order to develop a valid prediction. Students could
record the temperature at noon each day as a basis to show that temperatures are higher in certain months of
the year. If temperatures are not recorded on non-school days or are recorded incorrectly or at different times
of the day, the data would be incomplete and the ideas being communicated could be inaccurate. Students
may also record the day of the week on which the data was collected, but this would have no relevance to
whether temperatures are higher or lower. In order to have sufficient and accurate data on which to
communicate the idea, students might want to use data provided by a governmental weather agency.

Algorithms and Programming
1B-AP-08 Compare and refine multiple algorithms for the same task and determine which is the most

appropriate.

Different algorithms can achieve the same result, though sometimes one algorithm might be most appropriate
for a specific situation. Students should be able to look at different ways to solve the same task and decide
which would be the best solution. For example, students could use a map and plan multiple algorithms to get
from one point to another. They could look at routes suggested by mapping software and change the route to
something that would be better, based on which route is shortest or fastest or would avoid a problem.
Students might compare algorithms that describe how to get ready for school. Another example might be to
write different algorithms to draw a regular polygon and determine which algorithm would be the easiest to
modify or repurpose to draw a different polygon.

Algorithms 6.3, 3.3

1B-AP-09 Create programs that use variables to store and modify data.

Variables are used to store and modify data. At this level, understanding how to use variables is sufficient. For
example, students may use mathematical operations to add to the score of a game or subtract from the
number of lives available in a game. The use of a variable as a countdown timer is another example.

Variables 5.2

1B-AP-10 Create programs that include sequences, events, loops, and conditionals.

Control structures specify the order (sequence) in which instructions are executed within a program and can be
combined to support the creation of more complex programs. Events allow portions of a program to run
based on a specific action. For example, students could write a program to explain the water cycle and when a
specific component is clicked (event), the program would show information about that part of the water cycle.
Conditionals allow for the execution of a portion of code in a program when a certain condition is true. For
example, students could write a math game that asks multiplication fact questions and then uses a conditional
to check whether or not the answer that was entered is correct. Loops allow for the repetition of a sequence of
code multiple times. For example, in a program that produces an animation about a famous historical
character, students could use a loop to have the character walk across the screen as they introduce
themselves.

Control 5.2

1B-AP-11 Decompose (break down) problems into smaller, manageable subproblems to facilitate the
program development process.

Decomposition is the act of breaking down tasks into simpler tasks. For example, students could create an
animation by separating a story into different scenes. For each scene, they would select a background, place
characters, and program actions.

Modularity 3.2

1B-AP-12 Modify, remix, or incorporate portions of an existing program into one's own work, to
develop something new or add more advanced features.

Programs can be broken down into smaller parts, which can be incorporated into new or existing programs.
For example, students could modify prewritten code from a single-player game to create a two-player game
with slightly different rules, remix and add another scene to an animated story, use code to make a ball
bounce from another program in a new basketball game, or modify an image created by another student.

Modularity 5.3

1B-AP-13 Use an iterative process to plan the development of a program by including others'
perspectives and considering user preferences.

Planning is an important part of the iterative process of program development. Students outline key features,
time and resource constraints, and user expectations. Students should document the plan as, for example, a
storyboard, flowchart, pseudocode, or story map.

Program
Development

1.1, 5.1

1B-AP-14 Observe intellectual property rights and give appropriate attribution when creating or
remixing programs.

Intellectual property rights can vary by country but copyright laws give the creator of a work a set of rights that
prevents others from copying the work and using it in ways that they may not like. Students should identify
instances of remixing, when ideas are borrowed and iterated upon, and credit the original creator. Students
should also consider common licenses that place limitations or restrictions on the use of computational
artifacts, such as images and music downloaded from the Internet. At this stage, attribution should be written
in the format required by the teacher and should always be included on any programs shared online.

Program
Development

5.2, 7.3

1B-AP-15 Test and debug (identify and fix errors) a program or algorithm to ensure it runs as
intended.

As students develop programs they should continuously test those programs to see that they do what was
expected and fix (debug), any errors. Students should also be able to successfully debug simple errors in
programs created by others.

Program
Development

6.1, 6.2

	
	
	

1B-AP-16 Take on varying roles, with teacher guidance, when collaborating with peers during the
design, implementation, and review stages of program development.

Collaborative computing is the process of performing a computational task by working in pairs or on teams.
Because it involves asking for the contributions and feedback of others, effective collaboration can lead to
better outcomes than working independently. Students should take turns in different roles during program
development, such as note taker, facilitator, program tester, or “driver” of the computer.

Program
Development

2.2

1B-AP-17 Describe choices made during program development using code comments, presentations,
and demonstrations.

People communicate about their code to help others understand and use their programs. Another purpose of
communicating one's design choices is to show an understanding of one's work. These explanations could
manifest themselves as in-line code comments for collaborators and assessors, or as part of a summative
presentation, such as a code walk-through or coding journal.

Program
Development

7.2

Impacts of Computing
1B-IC-18 Discuss computing technologies that have changed the world, and express how those

technologies influence, and are influenced by, cultural practices.

New computing technology is created and existing technologies are modified for many reasons, including to
increase their benefits, decrease their risks, and meet societal needs. Students, with guidance from their
teacher, should discuss topics that relate to the history of technology and the changes in the world due to
technology. Topics could be based on current news content, such as robotics, wireless Internet, mobile
computing devices, GPS systems, wearable computing, or how social media has influenced social and political
changes.

Culture 3.1

1B-IC-19 Brainstorm ways to improve the accessibility and usability of technology products for the
diverse needs and wants of users.

The development and modification of computing technology are driven by people’s needs and wants and can
affect groups differently. Anticipating the needs and wants of diverse end users requires students to
purposefully consider potential perspectives of users with different backgrounds, ability levels, points of view,
and disabilities. For example, students may consider using both speech and text when they wish to convey
information in a game. They may also wish to vary the types of programs they create, knowing that not
everyone shares their own tastes.

Culture 1.2

	
	

1B-IC-20 Seek diverse perspectives for the purpose of improving computational artifacts.

Computing provides the possibility for collaboration and sharing of ideas and allows the benefit of diverse
perspectives. For example, students could seek feedback from other groups in their class or students at
another grade level. Or, with guidance from their teacher, they could use video conferencing tools or other
online collaborative spaces, such as blogs, wikis, forums, or website comments, to gather feedback from
individuals and groups about programming projects.

Social
Interactions

1.1

1B-IC-21 Use public domain or creative commons media, and refrain from copying or using material
created by others without permission.

Ethical complications arise from the opportunities provided by computing. The ease of sending and receiving
copies of media on the Internet, such as video, photos, and music, creates the opportunity for unauthorized
use, such as online piracy, and disregard of copyrights. Students should consider the licenses on
computational artifacts that they wish to use. For example, the license on a downloaded image or audio file
may have restrictions that prohibit modification, require attribution, or prohibit use entirely.

Safety Law &
Ethics

7.3

Level 2: Grades 6-8 (Ages 11-14)
Computing Systems
Identifier Standard and Descriptive Statement Subconcept Practice

2-CS-01 Recommend improvements to the design of computing devices, based on an analysis of
how users interact with the devices.

The study of human–computer interaction (HCI) can improve the design of devices, including both hardware
and software. Students should make recommendations for existing devices (e.g., a laptop, phone, or tablet) or
design their own components or interface (e.g., create their own controllers). Teachers can guide students to
consider usability through several lenses, including accessibility, ergonomics, and learnability. For example,
assistive devices provide capabilities such as scanning written information and converting it to speech.

Devices 3.3

2-CS-02 Design projects that combine hardware and software components to collect and exchange
data.

Collecting and exchanging data involves input, output, storage, and processing. When possible, students
should select the hardware and software components for their project designs by considering factors such as
functionality, cost, size, speed, accessibility, and aesthetics. For example, components for a mobile app could
include accelerometer, GPS, and speech recognition. The choice of a device that connects wirelessly through
a Bluetooth connection versus a physical USB connection involves a tradeoff between mobility and the need
for an additional power source for the wireless device.

Hardware &
Software

5.1

2-CS-03 Systematically identify and fix problems with computing devices and their components.

Since a computing device may interact with interconnected devices within a system, problems may not be due
to the specific computing device itself but to devices connected to it. Just as pilots use checklists to
troubleshoot problems with aircraft systems, students should use a similar, structured process to troubleshoot
problems with computing systems and ensure that potential solutions are not overlooked. Examples of
troubleshooting strategies include following a troubleshooting flow diagram, making changes to software to
see if hardware will work, checking connections and settings, and swapping in working components.

Troubleshooting 6.2

Networks and the Internet
2-NI-04 Model the role of protocols in transmitting data across networks and the Internet.

Protocols are rules that define how messages between computers are sent. They determine how quickly and
securely information is transmitted across networks and the Internet, as well as how to handle errors in
transmission. Students should model how data is sent using protocols to choose the fastest path, to deal with
missing information, and to deliver sensitive data securely. For example, students could devise a plan for
resending lost information or for interpreting a picture that has missing pieces. The priority at this grade level
is understanding the purpose of protocols and how they enable secure and errorless communication.
Knowledge of the details of how specific protocols work is not expected.

Network
Communication
& Organization

4.4

2-NI-05 Explain how physical and digital security measures protect electronic information.

Information that is stored online is vulnerable to unwanted access. Examples of physical security measures to
protect data include keeping passwords hidden, locking doors, making backup copies on external storage
devices, and erasing a storage device before it is reused. Examples of digital security measures include secure
router admin passwords, firewalls that limit access to private networks, and the use of a protocol such as
HTTPS to ensure secure data transmission.

Cybersecurity 7.2

2-NI-06 Apply multiple methods of encryption to model the secure transmission of information.

Encryption can be as simple as letter substitution or as complicated as modern methods used to secure
networks and the Internet. Students should encode and decode messages using a variety of encryption
methods, and they should understand the different levels of complexity used to hide or secure information.
For example, students could secure messages using methods such as Caesar cyphers or steganography (i.e.,
hiding messages inside a picture or other data). They can also model more complicated methods, such as
public key encryption, through unplugged activities.

Cybersecurity 4.4

Data and Analysis
2-DA-07 Represent data using multiple encoding schemes.

Data representations occur at multiple levels of abstraction, from the physical storage of bits to the
arrangement of information into organized formats (e.g., tables). Students should represent the same data in
multiple ways. For example, students could represent the same color using binary, RGB values, hex codes
(low-level representations), as well as forms understandable by people, including words, symbols, and digital
displays of the color (high-level representations).

Storage 4

2-DA-08 Collect data using computational tools and transform the data to make it more useful and
reliable.

As students continue to build on their ability to organize and present data visually to support a claim, they will
need to understand when and how to transform data for this purpose. Students should transform data to
remove errors, highlight or expose relationships, and/or make it easier for computers to process. The cleaning
of data is an important transformation for ensuring consistent format and reducing noise and errors (e.g.,
removing irrelevant responses in a survey). An example of a transformation that highlights a relationship is
representing males and females as percentages of a whole instead of as individual counts.

Collection
Visualization &
Transformation

6.3

2-DA-09 Refine computational models based on the data they have generated.
A model may be a programmed simulation of events or a representation of how various data is related. In
order to refine a model, students need to consider which data points are relevant, how data points relate to
each other, and if the data is accurate. For example, students may make a prediction about how far a ball will
travel based on a table of data related to the height and angle of a track. The students could then test and
refine their model by comparing predicted versus actual results and considering whether other factors are
relevant (e.g., size and mass of the ball). Additionally, students could refine game mechanics based on test
outcomes in order to make the game more balanced or fair.

Inference &
Models

5.3, 4.4

Algorithms and Programming
2-AP-10 Use flowcharts and/or pseudocode to address complex problems as algorithms.

Complex problems are problems that would be difficult for students to solve computationally. Students should
use pseudocode and/or flowcharts to organize and sequence an algorithm that addresses a complex problem,
even though they may not actually program the solutions. For example, students might express an algorithm
that produces a recommendation for purchasing sneakers based on inputs such as size, colors, brand, comfort,
and cost. Testing the algorithm with a wide range of inputs and users allows students to refine their
recommendation algorithm and to identify other inputs they may have initially excluded.

Algorithms 4.4, 4.1

	

2-AP-11 Create clearly named variables that represent different data types and perform operations
on their values.

A variable is like a container with a name, in which the contents may change, but the name (identifier) does
not. When planning and developing programs, students should decide when and how to declare and name
new variables. Students should use naming conventions to improve program readability. Examples of
operations include adding points to the score, combining user input with words to make a sentence, changing
the size of a picture, or adding a name to a list of people.

Variables 5.1, 5.2

2-AP-12 Design and iteratively develop programs that combine control structures, including nested
loops and compound conditionals.

Control structures can be combined in many ways. Nested loops are loops placed within loops. Compound
conditionals combine two or more conditions in a logical relationship (e.g., using AND, OR, and NOT), and
nesting conditionals within one another allows the result of one conditional to lead to another. For example,
when programming an interactive story, students could use a compound conditional within a loop to unlock a
door only if a character has a key AND is touching the door.

Control 5.1, 5.2

2-AP-13 Decompose problems and subproblems into parts to facilitate the design, implementation,
and review of programs.

Students should break down problems into subproblems, which can be further broken down to smaller parts.
Decomposition facilitates aspects of program development by allowing students to focus on one piece at a
time (e.g., getting input from the user, processing the data, and displaying the result to the user).
Decomposition also enables different students to work on different parts at the same time. For example,
animations can be decomposed into multiple scenes, which can be developed independently.

Modularity 3.2

2-AP-14 Create procedures with parameters to organize code and make it easier to reuse.
Students should create procedures and/or functions that are used multiple times within a program to repeat
groups of instructions. These procedures can be generalized by defining parameters that create different
outputs for a wide range of inputs. For example, a procedure to draw a circle involves many instructions, but
all of them can be invoked with one instruction, such as “drawCircle.” By adding a radius parameter, the user
can easily draw circles of different sizes.

Modularity 4.1, 4.3

	
	
	
	
	
	

2-AP-15 Seek and incorporate feedback from team members and users to refine a solution that
meets user needs.

Development teams that employ user-centered design create solutions (e.g., programs and devices) that can
have a large societal impact, such as an app that allows people with speech difficulties to translate hard-to-
understand pronunciation into understandable language. Students should begin to seek diverse perspectives
throughout the design process to improve their computational artifacts. Considerations of the end-user may
include usability, accessibility, age-appropriate content, respectful language, user perspective, pronoun use,
color contrast, and ease of use.

Program
Development

2.3, 1.1

2-AP-16 Incorporate existing code, media, and libraries into original programs, and give attribution.

Building on the work of others enables students to produce more interesting and powerful creations. Students
should use portions of code, algorithms, and/or digital media in their own programs and websites. At this
level, they may also import libraries and connect to web application program interfaces (APIs). For example,
when creating a side-scrolling game, students may incorporate portions of code that create a realistic jump
movement from another person's game, and they may also import Creative Commons-licensed images to use
in the background. Students should give attribution to the original creators to acknowledge their
contributions.

Program
Development

4.2, 5.2,
7.3

2-AP-17 Systematically test and refine programs using a range of test cases.

Use cases and test cases are created and analyzed to better meet the needs of users and to evaluate whether
programs function as intended. At this level, testing should become a deliberate process that is more iterative,
systematic, and proactive than at lower levels. Students should begin to test programs by considering
potential errors, such as what will happen if a user enters invalid input (e.g., negative numbers and 0 instead of
positive numbers).

Program
Development

6.1

2-AP-18 Distribute tasks and maintain a project timeline when collaboratively developing
computational artifacts.

Collaboration is a common and crucial practice in programming development. Often, many individuals and
groups work on the interdependent parts of a project together. Students should assume pre-defined roles
within their teams and manage the project workflow using structured timelines. With teacher guidance, they
will begin to create collective goals, expectations, and equitable workloads. For example, students may divide
the design stage of a game into planning the storyboard, flowchart, and different parts of the game
mechanics. They can then distribute tasks and roles among members of the team and assign deadlines.

Program
Development

2.2

	
	
	

2-AP-19 Document programs in order to make them easier to follow, test, and debug.

Documentation allows creators and others to more easily use and understand a program. Students should
provide documentation for end users that explains their artifacts and how they function. For example, students
could provide a project overview and clear user instructions. They should also incorporate comments in their
product and communicate their process using design documents, flowcharts, and presentations.

Program
Development

7.2

	
Impacts of Computing
2-IC-20 Compare tradeoffs associated with computing technologies that affect people's everyday

activities and career options.

Advancements in computer technology are neither wholly positive nor negative. However, the ways that
people use computing technologies have tradeoffs. Students should consider current events related to broad
ideas, including privacy, communication, and automation. For example, driverless cars can increase
convenience and reduce accidents, but they are also susceptible to hacking. The emerging industry will
reduce the number of taxi and shared-ride drivers, but will create more software engineering and
cybersecurity jobs.

Culture 7.2

2-IC-21 Discuss issues of bias and accessibility in the design of existing technologies.
Students should test and discuss the usability of various technology tools (e.g., apps, games, and devices) with
the teacher's guidance. For example, facial recognition software that works better for lighter skin tones was
likely developed with a homogeneous testing group and could be improved by sampling a more diverse
population. When discussing accessibility, students may notice that allowing a user to change font sizes and
colors will not only make an interface usable for people with low vision but also benefits users in various
situations, such as in bright daylight or a dark room.

Culture 1.2

2-IC-22 Collaborate with many contributors through strategies such as crowdsourcing or surveys
when creating a computational artifact.

Crowdsourcing is gathering services, ideas, or content from a large group of people, especially from the
online community. It can be done at the local level (e.g., classroom or school) or global level (e.g., age-
appropriate online communities, like Scratch and Minecraft). For example, a group of students could combine
animations to create a digital community mosaic. They could also solicit feedback from many people though
use of online communities and electronic surveys.

Social
Interactions

2.4, 5.2

	
	
	
	

2-IC-23 Describe tradeoffs between allowing information to be public and keeping information
private and secure.

Sharing information online can help establish, maintain, and strengthen connections between people. For
example, it allows artists and designers to display their talents and reach a broad audience. However, security
attacks often start with personal information that is publicly available online. Social engineering is based on
tricking people into revealing sensitive information and can be thwarted by being wary of attacks, such as
phishing and spoofing.

Safety Law &
Ethics

7.2

Level 3A: Grades 9-10 (Ages 14-16)
Computing Systems
Identifier Standard and Descriptive Statement Subconcept Practice

3A-CS-01 Explain how abstractions hide the underlying implementation details of computing systems
embedded in everyday objects.

Computing devices are often integrated with other systems, including biological, mechanical, and social
systems. A medical device can be embedded inside a person to monitor and regulate his or her health, a
hearing aid (a type of assistive device) can filter out certain frequencies and magnify others, a monitoring
device installed in a motor vehicle can track a person’s driving patterns and habits, and a facial recognition
device can be integrated into a security system to identify a person. The creation of integrated or embedded
systems is not an expectation at this level. Students might select an embedded device such as a car stereo,
identify the types of data (radio station presets, volume level) and procedures (increase volume, store/recall
saved station, mute) it includes, and explain how the implementation details are hidden from the user.

Devices 4.1

3A-CS-02 Compare levels of abstraction and interactions between application software, system
software, and hardware layers.

At its most basic level, a computer is composed of physical hardware and electrical impulses. Multiple layers
of software are built upon the hardware and interact with the layers above and below them to reduce
complexity. System software manages a computing device’s resources so that software can interact with
hardware. For example, text editing software interacts with the operating system to receive input from the
keyboard, convert the input to bits for storage, and interpret the bits as readable text to display on the
monitor. System software is used on many different types of devices, such as smart TVs, assistive devices,
virtual components, cloud components, and drones. For example, students may explore the progression from
voltage to binary signal to logic gates to adders and so on. Knowledge of specific, advanced terms for
computer architecture, such as BIOS, kernel, or bus, is not expected at this level.

Hardware &
Software

4.1

3A-CS-03 Develop guidelines that convey systematic troubleshooting strategies that others can use to
identify and fix errors.

Troubleshooting complex problems involves the use of multiple sources when researching, evaluating, and
implementing potential solutions. Troubleshooting also relies on experience, such as when people recognize
that a problem is similar to one they have seen before or adapt solutions that have worked in the past.
Examples of complex troubleshooting strategies include resolving connectivity problems, adjusting system
configurations and settings, ensuring hardware and software compatibility, and transferring data from one
device to another. Students could create a flow chart, a job aid for a help desk employee, or an expert system.

Troubleshooting 6.2

Networks and the Internet
3A-NI-04 Evaluate the scalability and reliability of networks, by describing the relationship between

routers, switches, servers, topology, and addressing.

Each device is assigned an address that uniquely identifies it on the network. Routers function by comparing IP
addresses to determine the pathways packets should take to reach their destination. Switches function by
comparing MAC addresses to determine which computers or network segments will receive frames. Students
could use online network simulators to experiment with these factors.

Network
Communication
& Organization

4.1

3A-NI-05 Give examples to illustrate how sensitive data can be affected by malware and other
attacks.

Network security depends on a combination of hardware, software, and practices that control access to data
and systems. The needs of users and the sensitivity of data determine the level of security implemented.
Potential security problems, such as denial-of-service attacks, ransomware, viruses, worms, spyware, and
phishing, present threats to sensitive data. Students might reflect on case studies or current events in which
governments or organizations experienced data leaks or data loss as a result of these types of attacks.

Network
Communication
& Organization

7.2

3A-NI-06 Recommend security measures to address various scenarios based on factors such as
efficiency, feasibility, and ethical impacts.

Security measures may include physical security tokens, two-factor authentication, and biometric verification.
Potential security problems, such as denial-of-service attacks, ransomware, viruses, worms, spyware, and
phishing, exemplify why sensitive data should be securely stored and transmitted. The timely and reliable
access to data and information services by authorized users, referred to as availability, is ensured through
adequate bandwidth, backups, and other measures. Students should systematically evaluate the feasibility of
using computational tools to solve given problems or subproblems, such as through a cost-benefit analysis.
Eventually, students should include more factors in their evaluations, such as how efficiency affects feasibility
or whether a proposed approach raises ethical concerns.

Cybersecurity 3.3

3A-NI-07 Compare various security measures, considering tradeoffs between the usability and
security of a computing system.

Security measures may include physical security tokens, two-factor authentication, and biometric verification,
but choosing security measures involves tradeoffs between the usability and security of the system. The needs
of users and the sensitivity of data determine the level of security implemented. Students might discuss
computer security policies in place at the local level that present a tradeoff between usability and security,
such as a web filter that prevents access to many educational sites but keeps the campus network safe.

Network
Communication
& Organization

6.3

3A-NI-08 Explain tradeoffs when selecting and implementing cybersecurity recommendations.

Network security depends on a combination of hardware, software, and practices that control access to data
and systems. The needs of users and the sensitivity of data determine the level of security implemented. Every
security measure involves tradeoffs between the accessibility and security of the system. Students should be
able to describe, justify, and document choices they make using terminology appropriate for the intended
audience and purpose. Students could debate issues from the perspective of diverse audiences, including
individuals, corporations, privacy advocates, security experts, and government.

Cybersecurity 7.2

Data and Analysis
3A-DA-09 Translate between different bit representations of real-world phenomena, such as

characters, numbers, and images.

For example, convert hexadecimal color codes to decimal percentages, ASCII/Unicode representation, and
logic gates.

Storage 4.1

3A-DA-10 Evaluate the tradeoffs in how data elements are organized and where data is stored.

People make choices about how data elements are organized and where data is stored. These choices affect
cost, speed, reliability, accessibility, privacy, and integrity. Students should evaluate whether a chosen solution
is most appropriate for a particular problem. Students might consider the cost, speed, reliability, accessibility,
privacy, and integrity tradeoffs between storing photo data on a mobile device versus in the cloud.

Storage 3.3

	
	
	
	
	
	
	
	

3A-DA-11 Create interactive data visualizations using software tools to help others better understand
real-world phenomena.

People transform, generalize, simplify, and present large data sets in different ways to influence how other
people interpret and understand the underlying information. Examples include visualization, aggregation,
rearrangement, and application of mathematical operations. People use software tools or programming to
create powerful, interactive data visualizations and perform a range of mathematical operations to transform
and analyze data. Students should model phenomena as systems, with rules governing the interactions within
the system and evaluate these models against real-world observations. For example, flocking behaviors,
queueing, or life cycles. Google Fusion Tables can provide access to data visualization online.

Collection
Visualization &
Transformation

4.4

3A-DA-12 Create computational models that represent the relationships among different elements of
data collected from a phenomenon or process.

Computational models make predictions about processes or phenomenon based on selected data and
features. The amount, quality, and diversity of data and the features chosen can affect the quality of a model
and ability to understand a system. Predictions or inferences are tested to validate models. Students should
model phenomena as systems, with rules governing the interactions within the system. Students should
analyze and evaluate these models against real-world observations. For example, students might create a
simple producer–consumer ecosystem model using a programming tool. Eventually, they could progress to
creating more complex and realistic interactions between species, such as predation, competition, or
symbiosis, and evaluate the model based on data gathered from nature.

Inference &
Models

4.4

Algorithms and Programming
3A-AP-13 Create prototypes that use algorithms to solve computational problems by leveraging prior

student knowledge and personal interests.

A prototype is a computational artifact that demonstrates the core functionality of a product or process.
Prototypes are useful for getting early feedback in the design process, and can yield insight into the feasibility
of a product. The process of developing computational artifacts embraces both creative expression and the
exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are
personally relevant or beneficial to their community and beyond. Students should develop artifacts in
response to a task or a computational problem that demonstrate the performance, reusability, and ease of
implementation of an algorithm.

Algorithms 5.2

	
	
	
	

3A-AP-14 Use lists to simplify solutions, generalizing computational problems instead of repeatedly
using simple variables.

Students should be able to identify common features in multiple segments of code and substitute a single
segment that uses lists (arrays) to account for the differences.

Variables 4.1

3A-AP-15 Justify the selection of specific control structures when tradeoffs involve implementation,
readability, and program performance, and explain the benefits and drawbacks of choices
made.

Implementation includes the choice of programming language, which affects the time and effort required to
create a program. Readability refers to how clear the program is to other programmers and can be improved
through documentation. The discussion of performance is limited to a theoretical understanding of execution
time and storage requirements; a quantitative analysis is not expected. Control structures at this level may
include conditional statements, loops, event handlers, and recursion. For example, students might compare
the readability and program performance of iterative and recursive implementations of procedures that
calculate the Fibonacci sequence.

Control 5.2

3A-AP-16 Design and iteratively develop computational artifacts for practical intent, personal
expression, or to address a societal issue by using events to initiate instructions.

In this context, relevant computational artifacts include programs, mobile apps, or web apps. Events can be
user-initiated, such as a button press, or system-initiated, such as a timer firing. At previous levels, students
have learned to create and call procedures. Here, students design procedures that are called by events.
Students might create a mobile app that updates a list of nearby points of interest when the device detects
that its location has been changed.

Control 5.2

3A-AP-17 Decompose problems into smaller components through systematic analysis, using
constructs such as procedures, modules, and/or objects.

At this level, students should decompose complex problems into manageable subproblems that could
potentially be solved with programs or procedures that already exist. For example, students could create an
app to solve a community problem by connecting to an online database through an application programming
interface (API).

Control 3.2

	
	
	
	
	
	

3A-AP-18 Create artifacts by using procedures within a program, combinations of data and
procedures, or independent but interrelated programs.

Computational artifacts can be created by combining and modifying existing artifacts or by developing new
artifacts. Examples of computational artifacts include programs, simulations, visualizations, digital animations,
robotic systems, and apps. Complex programs are designed as systems of interacting modules, each with a
specific role, coordinating for a common overall purpose. Modules allow for better management of complex
tasks. The focus at this level is understanding a program as a system with relationships between modules. The
choice of implementation, such as programming language or paradigm, may vary. Students could incorporate
computer vision libraries to increase the capabilities of a robot or leverage open-source JavaScript libraries to
expand the functionality of a web application.

Modularity 5.2

3A-AP-19 Systematically design and develop programs for broad audiences by incorporating
feedback from users.

Examples of programs could include games, utilities, and mobile applications. Students at lower levels collect
feedback and revise programs. At this level, students should do so through a systematic process that includes
feedback from broad audiences. Students might create a user satisfaction survey and brainstorm distribution
methods that could yield feedback from a diverse audience, documenting the process they took to
incorporate selected feedback in product revisions.

Modularity 5.1

3A-AP-20 Evaluate licenses that limit or restrict use of computational artifacts when using resources
such as libraries.

Examples of software licenses include copyright, freeware, and the many open-source licensing schemes. At
previous levels, students adhered to licensing schemes. At this level, they should consider licensing
implications for their own work, especially when incorporating libraries and other resources. Students might
consider two software libraries that address a similar need, justifying their choice based on the library that has
the least restrictive license.

Program
Development

7.3

3A-AP-21 Evaluate and refine computational artifacts to make them more usable and accessible.

Testing and refinement is the deliberate and iterative process of improving a computational artifact. This
process includes debugging (identifying and fixing errors) and comparing actual outcomes to intended
outcomes. Students should respond to the changing needs and expectations of end users and improve the
performance, reliability, usability, and accessibility of artifacts. For example, students could incorporate
feedback from a variety of end users to help guide the size and placement of menus and buttons in a user
interface.

Program
Development

6.3

	
	

3A-AP-22 Design and develop computational artifacts working in team roles using collaborative tools.

Collaborative tools could be as complex as source code version control system or as simple as a collaborative
word processor. Team roles in pair programming are driver and navigator but could be more specialized in
larger teams. As programs grow more complex, the choice of resources that aid program development
becomes increasingly important and should be made by the students. Students might work as a team to
develop a mobile application that addresses a problem relevant to the school or community, selecting
appropriate tools to establish and manage the project timeline; design, share, and revise graphical user
interface elements; and track planned, in-progress, and completed components.

Program
Development

2.4

3A-AP-23 Document design decisions using text, graphics, presentations, and/or demonstrations in
the development of complex programs.

Complex programs are designed as systems of interacting modules, each with a specific role, coordinating for
a common overall purpose. These modules can be procedures within a program; combinations of data and
procedures; or independent, but interrelated, programs. The development of complex programs is aided by
resources such as libraries and tools to edit and manage parts of the program.

Program
Development

7.2

	
Impacts of Computing
3A-IC-24 Evaluate the ways computing impacts personal, ethical, social, economic, and cultural

practices.

Computing may improve, harm, or maintain practices. Equity deficits, such as minimal exposure to
computing, access to education, and training opportunities, are related to larger, systemic problems in
society. Students should be able to evaluate the accessibility of a product to a broad group of end users, such
as people who lack access to broadband or who have various disabilities. Students should also begin to
identify potential bias during the design process to maximize accessibility in product design.

Culture 1.2

3A-IC-25 Test and refine computational artifacts to reduce bias and equity deficits.

Biases could include incorrect assumptions developers have made about their user base. Equity deficits
include minimal exposure to computing, access to education, and training opportunities. Students should
begin to identify potential bias during the design process to maximize accessibility in product design and
become aware of professionally accepted accessibility standards to evaluate computational artifacts for
accessibility.

Culture 1.2

	
	
	
	

3A-IC-26 Demonstrate ways a given algorithm applies to problems across disciplines.

Computation can share features with disciplines such as art and music by algorithmically translating human
intention into an artifact. Students should be able to identify real-world problems that span multiple
disciplines, such as increasing bike safety with new helmet technology, and that can be solved
computationally.

Culture 3.1

3A-IC-27 Use tools and methods for collaboration on a project to increase connectivity of people in
different cultures and career fields.

Many aspects of society, especially careers, have been affected by the degree of communication afforded by
computing. The increased connectivity between people in different cultures and in different career fields has
changed the nature and content of many careers. Students should explore different collaborative tools and
methods used to solicit input from team members, classmates, and others, such as participation in online
forums or local communities. For example, students could compare ways different social media tools could
help a team become more cohesive.

Social
Interactions

2.4

3A-IC-28 Explain the beneficial and harmful effects that intellectual property laws can have on
innovation.

Laws govern many aspects of computing, such as privacy, data, property, information, and identity. These laws
can have beneficial and harmful effects, such as expediting or delaying advancements in computing and
protecting or infringing upon people’s rights. International differences in laws and ethics have implications for
computing. For examples, laws that mandate the blocking of some file-sharing websites may reduce online
piracy but can restrict the right to access information. Firewalls can be used to block harmful viruses and
malware but can also be used for media censorship. Students should be aware of intellectual property laws
and be able to explain how they are used to protect the interests of innovators and how patent trolls abuse
the laws for financial gain.

Safety Law &
Ethics

7.3

3A-IC-29 Explain the privacy concerns related to the collection and generation of data through
automated processes that may not be evident to users.

Data can be collected and aggregated across millions of people, even when they are not actively engaging
with or physically near the data collection devices. This automated and nonevident collection can raise privacy
concerns, such as social media sites mining an account even when the user is not online. Other examples
include surveillance video used in a store to track customers for security or information about purchase habits
or the monitoring of road traffic to change signals in real time to improve road efficiency without drivers being
aware. Methods and devices for collecting data can differ by the amount of storage required, level of detail
collected, and sampling rates.

Safety Law &
Ethics

7.2

	

3A-IC-30 Evaluate the social and economic implications of privacy in the context of safety, law, or
ethics.

Laws govern many aspects of computing, such as privacy, data, property, information, and identity.
International differences in laws and ethics have implications for computing. Students might review case
studies or current events which present an ethical dilemma when an individual's right to privacy is at odds with
the safety, security, or wellbeing of a community.

Safety Law &
Ethics

7.3

Level 3B: Grades 11-12 (Ages 16-18)
Computing Systems
Identifier Standard and Descriptive Statement Subconcept Practice

3B-CS-01 Categorize the roles of operating system software.

Examples of roles could include memory management, data storage/retrieval, processes management, and
access control.

Hardware &
Software

7.2

3B-CS-02 Illustrate ways computing systems implement logic, input, and output through hardware
components.

Examples of components could include logic gates and IO pins.

Troubleshooting 7.2

Networks and the Internet
3B-NI-03 Describe the issues that impact network functionality (e.g., bandwidth, load, delay,

topology).

Recommend use of free online network simulators to explore how these issues impact network functionality.

Network
Communication
& Organization

7.2

3B-NI-04 Compare ways software developers protect devices and information from unauthorized
access.

Examples of security concerns to consider: encryption and authentication strategies, secure coding, and
safeguarding keys.

Cybersecurity 7.2

Data and Analysis
3B-DA-05 Use data analysis tools and techniques to identify patterns in data representing complex

systems.

For example, identify trends in a dataset representing social media interactions, movie reviews, or shopping
patterns.

Collection
Visualization &
Transformation

4.1

3B-DA-06 Select data collection tools and techniques to generate data sets that support a claim or
communicate information.

Collection
Visualization &
Transformation

7.2

3B-DA-07 Evaluate the ability of models and simulations to test and support the refinement of
hypotheses.

Inference &
Models

4.4

Algorithms and Programming
3B-AP-08 Describe how artificial intelligence drives many software and physical systems.

Examples include digital ad delivery, self-driving cars, and credit card fraud detection.

Algorithms 7.2

3B-AP-09 Implement an artificial intelligence algorithm to play a game against a human opponent or
solve a problem.

Games do not have to be complex. Simple guessing games, Tic-Tac-Toe, or simple robot commands will be
sufficient.

Algorithms 5.3

3B-AP-10 Use and adapt classic algorithms to solve computational problems.

Examples could include sorting and searching.

Algorithms 4.2

3B-AP-11 Evaluate algorithms in terms of their efficiency, correctness, and clarity.

Examples could include sorting and searching.

Algorithms 4.2

3B-AP-12 Compare and contrast fundamental data structures and their uses.
Examples could include strings, lists, arrays, stacks, and queues.

Variables 4.2

3B-AP-13 Illustrate the flow of execution of a recursive algorithm. Control 3.2

	

3B-AP-14 Construct solutions to problems using student-created components, such as procedures,
modules and/or objects.

Object-oriented programming is optional at this level. Problems can be assigned or student-selected.

Modularity 5.2

3B-AP-15 Analyze a large-scale computational problem and identify generalizable patterns that can
be applied to a solution.

As students encounter complex, real-world problems that span multiple disciplines or social systems, they
should decompose complex problems into manageable subproblems that could potentially be solved with
programs or procedures that already exist. For example, students could create an app to solve a community
problem by connecting to an online database through an application programming interface (API).

Modularity 4.1

3B-AP-16 Demonstrate code reuse by creating programming solutions using libraries and APIs.

Libraries and APIs can be student-created or common graphics libraries or maps APIs, for example.

Modularity 5.3

3B-AP-17 Plan and develop programs for broad audiences using a software life cycle process.

Processes could include agile, spiral, or waterfall.

Program
Development

5.1

3B-AP-18 Explain security issues that might lead to compromised computer programs.

For example, common issues include lack of bounds checking, poor input validation, and circular references.

Program
Development

7.2

3B-AP-19 Develop programs for multiple computing platforms.
Example platforms could include: computer desktop, web, or mobile.

Program
Development

5.2

3B-AP-20 Use version control systems, integrated development environments (IDEs), and
collaborative tools and practices (code documentation) in a group software project.

Group software projects can be assigned or student-selected.

Program
Development

2.4

3B-AP-21 Develop and use a series of test cases to verify that a program performs according to its
design specifications.

At this level, students are expected to select their own test cases.

Program
Development

6.1

3B-AP-22 Modify an existing program to add additional functionality and discuss intended and
unintended implications (e.g., breaking other functionality).

For instance, changes made to a method or function signature could break invocations of that method
elsewhere in a system.

Program
Development

5.3

3B-AP-23 Evaluate key qualities of a program through a process such as a code review.

Examples of qualities could include correctness, usability, readability, efficiency, portability and scalability.

Program
Development

6.3

3B-AP-24 Compare multiple programming languages and discuss how their features make them
suitable for solving different types of problems.

Examples of features include blocks versus text, indentation versus curly braces, and high-level versus low-
level.

Program
Development

7.2

	
Impacts of Computing
3B-IC-25 Evaluate computational artifacts to maximize their beneficial effects and minimize harmful

effects on society.
Culture 6.1, 1.2

3B-IC-26 Evaluate the impact of equity, access, and influence on the distribution of computing
resources in a global society.

Culture 1.2

3B-IC-27 Predict how computational innovations that have revolutionized aspects of our culture
might evolve.

Areas to consider might include education, healthcare, art/entertainment, and energy.

Culture 7.2

3B-IC-28 Debate laws and regulations that impact the development and use of software. Safety Law &
Ethics

3.3, 7.3

	
	

The CSTA K-12 Computer Science Standards are created and maintained by educator members of
the Computer Science Teachers Association (CSTA). The Association for Computing Machinery
(ACM) founded CSTA as part of its commitment to K-12 computer science education.

	CSTA Cover Page
	CSTA Computer Science Standards Revised 2017

